1/57
文档分类:研究生考试

高二数学寒假讲义.doc


下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

特别说明:文档预览什么样,下载就是什么样。

0/100
您的浏览器不支持进度条
下载所得到的文件列表
高二数学寒假讲义.doc
文档介绍:
第一讲圆锥曲线专题(一)题型一:面积问题1.设是抛物线:的焦点,设为抛物线上异于原点的两点,且满足,延长分别交抛物线于点,求四边形面积的最小值.QPNMFO2.、、、四点都在椭圆上,为椭圆在轴正半轴上的焦点.已知与共线,与共线,且.求四边形的面积的最值.题型二:直线过定点问题3.、是抛物线上的两点,且满足(为坐标原点),求证:直线经过一个定点.4.已知离心率为的双曲线的中心在坐标原点,左、右焦点在轴上,双曲线的右支上一点使且的面积为1.(1)求双曲线的标准方程;(2)若直线与双曲线相交于两点(不是左右顶点),且以为直径的圆过双曲线的右顶点,求证:直线过定点,并求出该定点的坐标.5.已知点是平面上一动点,且满足(1)求点的轨迹对应的方程;(2)已知点在曲线上,过点作曲线的两条弦和,且,判断:直线是否过定点?试证明你的结论.题型三:直线斜率为定值问题6.如图,过抛物线上一定点,作两条直线分别交抛物线于,,当与的斜率存在且倾斜角互补时,证明直线的斜率为定值.7.已知椭圆过点,两个焦点为.(1)求椭圆的方程;(2)是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.第三讲圆锥曲线专题(二)【知识要点】熟练向量共线问题与坐标的转化【经典例题】1.已知抛物线,为的焦点,过焦点斜率为的直线与抛物线交于两点,若,则.2.给定抛物线,过定点的直线与抛物线交于两点,若,求直线的方程.3.已知椭圆,若过点的直线椭圆交于不同的两点、(点在、之间),试求与面积之比的取值范围(为坐标原点).4.已知两定点,动点在轴的射影为,若.(1)求动点的轨迹的方程;(2)直线交轴于点,交轨迹于两点,且满足,求实数的取值范围.5.如图,已知点,直线为平面上的动点,过作直线的垂线,垂足为点,且有. (1)求动点P的轨迹C的方程;(2)过点F的直线交轨迹C于两点,交直线于点,已知求的值.6.双曲线与椭圆有相同的焦点,直线为的一条渐近线.(1)求双曲线的方程;(2)过点的直线,交双曲线于两点,交轴于点(点与的顶点不重合),当,且时,求点的坐标. 内容来自淘豆网www.taodocs.com转载请标明出处.